DROP IN AN OSCILLATING LIQUID
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At the present time there is a complete lack of studies devoted to the forced motion of a drop
located in an oscillating liquid. However, this problem is of considerable interest, For ex-
ample, it represents simulation of hydrodynamic processes occurring during the irradiation

of drops of one liquid located in another liquid by longwave sound. The stationary flows oc~
curring in this case may have a significant influence on the heat- and mass-transfer processes.
In the present article we investigate the velocity field in the interior and exterior of a drop
executing forced oscillatory motion as a result of its interaction with the ambient liquid.

At a sufficiently large distance from the drop the ambient liquid oscillates in a specified way,
where s/R « 1 (s is the amplitude of displacement of the liquid particles, and R is the radius
of the drop).

The interface of the two media executes a complex motion consisting of its displacement as a whole
and of deformation, i.e., of a departure of its shape from the initial spherical shape. Both liquids (inside
and outside the drop) are assumed viscous and incompressible, There are no gravity forces, The flow
pattern is assumed to be axisymmetric with respect to the straight line passing through the center of gra-
vity of the drop and oriented along the direction of motion of the unperturbed liquid (inthe spherical coor-
dinate system used below the polar axis will coincide with the axis of symmetry). The motion of the liquid
is assumed to be periodic in time,

The region under consideration is divided inio two parts, the exterior (region outside the drop) and
the interior (region inside the drop). All the quantities referringtotheinterior region except the indepen-
dent variables are denoted by primes. The coordinate origin is fixed at the center of gravity of the drop.
The initial equations for the exterior region are written in the form
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where w is the velocity of the liquid particles in the fixed coordinate system, p is the pressure, p is the

density, v is the coefficient of kinematic viscosity, and v, is the velocity of the center of gravity of the
drop (this quantity must be determined during the solution of the problem).

The solution for the exterior region must be bounded; furthermore, at an infinitely large distance
from the drop the condition

w=1u Cco$ wf,

must be satisfied, where u is the amplitude of the velocity of the unperturbed liquid and « is the angular
frequency of the oscillations.

The initial equations for the interior region are similar in form, The solution for this region also
must be bounded.

The following conditions must be satisfied at the interface of the two regions:
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where Ifj are the components of the stress tensor; nj are the components of the unit vector normal to the
surface of separation; o is the coefficient of surface tension; Ry, R, are the principal radii of curvature of

" the surface of separation; k, i = 1, 2, 3; repeated indices imply summation (in the second condition, see

[1p.

In accordance with the methods of the perturbation theory we shall seek the solution of this problem
in the form of power series of the small parameter s/R and we shall restrict ourselves to the first two
terms of the expansion, i.e., we write w, w', p, p' in the form

W=VitVy) P=prtpa;
W =vi+ vy p = pi+pa

For the first approximation we have
vy

1
iy VpL-VvAvVy,
Av,=0.

In this approximation the boundary conditions are linear and homogeneous with respect to the components
of the velocity vector. This follows from the fact that, since the pressure p; is linear in the components of
v, the components of the stress tensor Iy are also linear in v, (the same holds for Hik). It is well known
{1] that in the first approximation
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where R is the radius of the unperturbed drop, ¢ is the amount of deflection of a point on the surface of

the drop from its mean (unperturbed position), and ¢ is the polar angle in the spherical coordinate system.
Since

= fv,ldt,

where v, is the radial component of v at the surface of the drop, the expression for (1/Ry)+1/R,) is
linear in vyj. The homogeneity of the boundary conditions follows from the fact that the pressure p; oc-
curring in the expression for the components of the stress tensor is determined with an accuracy up to an
arbitrary function of time.

In the first approximation the boundary conditions at the surface of the drop, whose form differs only
slightly from spherical, can be taken to be the same as at the unperturbed sphere.

It may be stated that the solution in this approximation does not contain stationary components., Ac-
tually, by virtue of the linearity of the equations and the boundary conditions the problems of determining
the stationary and oscillatory components are solved separately. The stationary component must vanish
at afinite distancefrom the drop (by stipulation); therefore because of the homogeneity of the stationary
problem the solution for these stationary components can only be zero.

Let us putv, = v exp(—iat); p; = p exp(—iwt) (only the real part is meaningful), where v and p are
functions of the coordinates (the same holds for v;, p'i). The equations for v and p are of the form

—i Lp=vAv,
zu)v-l»pvp vAY (1)
vv=0.

Similar equations are obtained also for v', p'. Taking account of the statement made above, the boundary
conditions are written in the form

Virye = Uy V=g = V'/ip; 2)
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The formulation of the boundary conditions in form (2) (with the addition of the requirement of boundedness
of the solution in both regions) permits complete solution of the problem in the first approximation; in
particular, it is possible to determine the velocity of the drop as a whole and also the change of its form.

In the second approximation we shall consider only the stationary solution, since the oscillating solu-
tion is determined mainly by the first approximation [with an accuracy up to small quantities of the order
(s/R)?]. For the stationary flow we have the equations

vy —vy) Vv = — % Vs + VAV, 3)
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where the angular brackets denote averaging over the oscillation period. The equations for v;, pfz are also
written in the same way.

Let us formulate the boundary conditions, The velocity v, mustvanish at an infinite distance from
the drop. It is clear from the symmetry of the problem that the drop as a whole cannot execute stationary
motion. Averaged over time the surface of the drop has a constant form only slightly differing from spher-
ical; therefore it can be assumed (with an accuracy up to small quantities defined by the subsequent ap-
proximations) that averaged over time the drop is simply a sphere at rest in the outer liquid; then at the
surface of the drop it is sufficient to requ1re that the radial components of the velocity vy, and VZI. be zero
and also the tangential components v,, and v, from and into the drop be equal,

The complete boundary conditions are then written in the form

L] I
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These relations must be supplemented by the requirement that the solution be bounded in both re-
gions,

r==R

We now turn to the solution of the problem in the first approximation, We shall show that in this
approximation the drop will retain the spherical shape. If it is actually so, then the solution satisfying
Egs. (1) and boundary conditions (2) can be written in the form

b, =1(r) cos 0; vo=o(r) sin 0; p=y(r) cos .

The factor in the surface-tension coefficient & in (2) vanishes identically, i.e., the solution is independent
of ., That this result is not in contradiction with the assumption of sphericity of the drop (under the con~
dition that the solution is unique) proves the validity of that assumption.

Batchelor [2] has pointed out a similar fact for the case of stationary motion of the drop in a viscous
liquid at small Reynolds numbers (Hadamard—Rybchinskii problem). In both cases this is a result of
neglecting the nonlinear terms in the problem.

The solution for the oscillatory components, which is bounded and satisfies the boundary conditions
at infinity, is of the form

_ucose[aexp(zkr)vkﬁ —«.;22_);331’. Tq ()

vszusmﬁ[aexp (zkr)( = ~-—1—-—§— 'lr]—t)“‘_;b? — 1];

p = u cos Buk? (% 4- r);

403



v, = 2u cos G{c [exp (inr) (—;15- — %) — exp (— ixr) (ria -+ Zr—’:ﬂ - d};
Dy = . , 1 i% w\ , 1, ix %2
9 = usin@ {c [exp (inr) (F - ——r—) — oXp (— inr) (r_‘* a7 T)] -+~ 2d};\
P. == 7 2du cos Bl

Here k=1 +1i)/6;n=(@1 +1) /8", 6 = ‘[V/Zw; a, b, ¢, d are undetermined constants which must be
found from the boundary conditions at the surface of the drop (2). Below we shall assume that |kR| > 1,
[“R| > 1; then we have

Y P
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d= - ————, where 8=~—1—; 0= - 1)4
9 (1 . 2%) kR ik
The velocity of The dropv,is determined from the first or fourth formula in (4) for r = R and is given
by
_ %
Vo = PRy ucos wl,

which coincides with the well-known formula for the velocity of a solid sphere of density p' located in an
ideal oscillating liquid of density p.

In order to find the stationary components of the flow v,, vy' we rewrite Eqds. (3) in the form

vA rot vo=— {rot {{v; — v;) Xrot vy]>=ep(r) sin 28, (6)

where ¢ is the azimuthal base vector in the spherical coordinate system. For ¢(r) and ¢'(r) we then get

21 g2
2 agTa s 3b
@) = 52L}{3.GXP(_—TI){ 16 % [cosn —sinn — exp (— )] - }g—[al(cosn_ sint)—a, (cos 1 + sin n)]};

, 2u? , .
¢r = 5“f;;{3 exp (0') (¢f 4 ¢3)[exp (') — sinn’ — cos 7]

Here = (r —R)/6, n' = (r—R)/6'; the real constants ay, a,, ¢y, ¢, are related to constants a, ¢ in
(5) in the following manner:

ay+iay=a exp (ikR); cy-+icy=c exp (—ixR).

Introducing the stream function ¢ [vy,, = (1/r%sin6) (81 /66), vog = (1/r sin6)(0 ¢/dr)] and expressing it in the
form

Pp==0{(r) sin 26 sin 0,
we rewrite Eq. (6) in the form
TrrY QTT 1 (DT' 7
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The boundary conditions at the surface of the drop become
Dlyp = @'}y = 0; (8)
(Dr]r——-R = q);lr:R;

/© @, (@, @,
e ’2F2‘) =P (%—zﬁ)

The solution for & and @' that is bounded and satisfies theboundary condition at infinity (v, — D)is
written in the form

1'=R‘

— A/r2_ B Ldo-
O=A/r?--B-- DY, (9)
D' =Cr-+-Dr3-- D0,

where ¢ and 3'° are particular solutions of (7) given by the formulas

Obviously, the particular solutions thus obtained satisfy (under the condition |kR|> 1, |%R| > 1) Egs.
(7); A, B, C, D are undetermined constants that are found from boundary conditions (8). After some com-

putations we get

282 a2 +akr g .
P = VER?{— —a [TGXP (— 2n) 4 exp (— n) (cos 1 — sin n)]+
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In particular, if y'/u ~ «, o'/p = = (sdlid sphere at rest in an oscillating liquid), then according to (5)
we have

ay =a, = ———-i—Ra; b:,}};_; e, =0; c2:36'3}i:.
4
N
Then
_ 45 PR3 _ 4bu?®2R, .
_‘1~——8 16_—\’—’ B——-—m, C:-‘O, DZO.

Inside the drop there is no flow, Let us determine the tangential component of the velocity v, 0 at the limit
of the "boundary layer" (n > 1) in the outer liquid, With the use of (9) we get

45 u?

1 .
vze(G)Z?(Drsm% = —%‘%sinZB: — B Ta

sin 26,
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which coincides with the result obtained in [3]. If u'/u—~ 0, p'/p — 0 (model of a bubble in the liquid), then
we have

a;=0; a,=36% c;=0; c,=— 3/2R5%;, h=— R®
and

4sures o Asurd

C=—g5rg; 3V RE

In order of magnitude the constants A and B are equal to

u283R2 . u2gds

v H A ———

For n' < — 1 the tangential component of the velocity inside the drop is equal to

, 2
vop (8) = — »482 Z—m sin 20.

Outside the drop the velocity v,4(6) has the following order of magnitude:
i’ze (6) -~ w9

Ro R’

hence

6 (8)] < lv2s (8)
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